
12/20/2013 

1 

The impacts of biochar and 

compost on microbial 

extracellular electron transfer 

processes as shown by studies on 

soil microbial fuel cells  

Aurelio Briones and Allison Torres 

University of Idaho 



12/20/2013 

2 

• Extracellular electron transfer (EET): 
microbial process involved in a specialized 
form of anaerobic respiration  

• Anaerobic respiration involving insoluble or 
membrane-impermeable electron acceptors 
require EET  
– e.g., iron oxides, humic substances, anode 

electrode in SMFC 

Extracellular electron transfer 

rrrrrrrrr         
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Microbial fuel cell: the basics 

Anaerobic Aerobic 
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Electron shuttles: humic substances  

• Recalcitrant and ubiquitous 

• Most redox-active group are 
quinones; hydroquinone = 
electron donor; quinone = 
electron acceptor 

• Microbes capable of utilizing 
humic substances as electron 
donor/acceptor are 
ubiquitous – example is from 
agricultural soil (Van Trump 
et al. mBio 2011; 
doi:10.1128/mBio.00044-11 
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Biochar and EET 

• Important similarities to 
humic substances – quinone 
groups also present 

• Charcoal and similar 
materials have been used as 
electrodes for MFCs 

• Granular activated carbon 
can facilitate direct 
interspecies electron 
transfer 

• Biochar supports EET and 
biofilm growth 

Liu et al. 2012. Energy Environ. Sci 



12/20/2013 

6 

Synergism Hypotheses 
• If biochar and HS enriches for 

microbes involved in EET in 
biofilm form, then amending 
soil with biochar and source of 
HS (compost) will lead to 
enrichment of anode-reducing 
bacterial biofilms, which will 
enhance electricity production 
than either substance alone 

• Similarly, providing anode- and 
iron-reducing bacteria with 
biochar and HS will enhance Fe 
reduction at a higher rate than 
either alone 
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Approach 

• Construct SMFCs with the following 
treatments: soil alone, soil plus biochar, soil 
plus compost, soil plus biochar plus compost 

• Monitor electricity production 

• Perform microbial community analysis of 
anode biofilm using next-generation DNA 
sequencing 

• Use NGS data to select a pure bacterial 
culture for Fe(III) reduction experiments in 
defined medium comparing the same 
treatments 
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Results: SMFC experiment 
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Results: Next-generation DNA 

sequencing 
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Results: Reduction of Fe(III) by a 

Bacillus sp. 
• Bacillus sp. – a known Fe(III) reducer; selected 

based on identification of dominant anode 
reducer by next-gen DNA sequencing 

AQS = humic substance 
analog 
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Results: Cathode experiments - EET in 

response to nitrate 
Aerobic conditions at cathode 
Biochar+compost 

• Nitrate injected  
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Recap 
• Maximum peaks of electricity production are 

observed in biochar plus compost treatment 

• Microbial communities on the anode contain high 
abundance of Bacilli in biochar plus compost vs. 
compost alone 

• Highest rates of Fe(III) reduction by a Bacillus sp. 
observed when biochar and AQS are present at the 
same time 

• Overall supports hypothesis that biochar and HS 
enhance EET synergistically 

• We are now investigating the possibility that 
biochar and HS also enhance electron transfers 
involved in nitrate respiration– lithotrophic 
denitrification? 
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Results: SMFC electrode-specific 

feeding 
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Next-generation DNA sequencing 

• “Old” = Sanger 
sequencing 

• NGS = massively 
parallel approach to 
DNA sequencing 

• A number of different 
platforms or 
methods, we are 
using Ion Torrent 
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Van Trump J I et al. mBio 2011; doi:10.1128/mBio.00044-11 
. 

Red = reduced HA 
 
Blue = oxidized HA 
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Links between iron, nitrate (N2O) 

Nitrate 
priority areas 
Idaho DEQ 

Cattle 
growing 
areas 
http://www.
factoryfarm
map.org 

Can biochar play a role in reducing impacts of 
nitrogen pollution? 

http://www.factoryfarmmap.org/
http://www.factoryfarmmap.org/
http://www.factoryfarmmap.org/
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Intracellular electron transfer 

• Anaerobic respiration in P. denitrificans occurs 
intracellularly 

• Involves electron flow driven by strong 
thermodynamics to synthesize ATP 
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Cathode experiments: Electrical 

responses to nitrate 

Anaerobic conditions  


